[6.26] Accurate numerical derivatives with nDeriv() and Ridder's method
This tip is lengthy. It is divided into these sections:

* Optimum results from nDeriv. How to use the built-in nDeriv() function to get the most accurate
results, with a function called nder2().

* More accurate results with Ridders' method. Shows a method (Ridders') that gives much better
results than nDeriv(), with a program called nder1().

* Diagnosing nder1() with nder1p(). Shows how to fix errors that might occur with the Ridders'
method program.

» General comments on numerical differentiation. General concerns with any numerical differentiation
method.

* More comments on nder1() and Ridders' method. Lengthy discussion of nder1() results,
performance, and also some interesting behavior of the built-in nDeriv() function.

In general, the most accurate method to find a numerical derivative is to use the CAS to find the
symbolic derivative, then evaluate the derivative at the point of interest. For example, to find the
numeric derivative of tan(x), where x =z /2.01 = 1.562981..., find

d

- 1 -
ax tan(x) = (C—2 =16374.241898666

os(x))

This method fails when the CAS cannot find a symbolic expression for the derivative, for example, for a
complicated user function. The 89/92+ provide two built-in functions for finding numerical derivatives:
avgRC() and nDeriv(). avgRC() uses the forward difference to approximate the derivative at x:

avgRC(f(x), x, h) = f(ng—f(x)

and nDeriv() uses the central difference to approximate the derivative:

nDeriv(f(x), x, h) = W
The built-in functions avgRC() and nDeriv() are fast, but they may not be accurate enough for some
applications. The avgRC() function can return, at best, an accuracy on the order of en'’2, where e, is
the machine accuracy. Since the 89/92+ uses 14 decimal digits, em = 1E-14, so the best result we can
expect is about 1E-7. For nDeriv(), the best accuracy will be about e??, or about 5E-10. Neither of
these accuracies reach the 12-digit accuracy of which the 89/92+ is capabile. It is also quite possible
that the actual error will be much worse. Our goal is to develop a routine which can calculate
derivatives with an accuracy near the full displayed resolution of the 89/92+.

Since the title of this tip is accurate numeric derivatives, | won't further consider avgRC(). Instead, | will
show how to get the best accuracy from nDeriv(), and also present code for an alternative method that
does even better.

Optimum results from nDeriv(): nder2()

nDeriv() finds the central difference over an interval h, where h defaults to 0.001. Since the limit of the
nDeriv() formula is the derivative, it makes sense that the smaller we make h, the better the derivative
result. Unfortunately, round-off errors dominate the result for too-small values of h. Therefore, there is
an optimum value of h for a given function and evaluation point. An obvious strategy is to evaluate the

formula with increasingly smaller values of h, until the absolute value of successive differences in f(x)
begins to increase. This program, nder2(), shows this idea:

nder2(ff,xx)

func

o("f",x) find best f'(x) at x with central-difference formula
©6jun@@ dburkett@infinet.com

local ffl,ff2,k,x,dl,d2,d3,h

©Build function expressions
fFf&" (xx+h)">ffl
fFf&" (xx=h)">ff2

oFind first two estimates
.01->h
(expr(ffl)-expr(ff2))/.02>dl
.001-h
(expr(ffl)-expr(ff2))/.002>d2

oLoop to find best estimate
for k,4,14
107-k>h
(expr(ffl)-expr(ff2))/(2%h)->d3
if abs(d3-d2)>abs(d2-dl) then
return d2
else
d2-dl
d3-d2
endif
endfor

©Best not found; return last estimate
return d3

Endfunc

Call nder2() with the function name as a string. For example, to find the derivative of tan(x) at /2.01,
the call is

nder2("tan",z/2.01)
which returns 16374.242. The absolute error is about 1.01E-4, and the relative error is 6.19E-9.

The table below demonstrates the improvement in the derivative estimate as h decreases, for tan(x)
evaluated at x = 1.

h f'(x) difference in f'(x)
1E-2 3.4264 6416 009 (none)

1E-3 3.4255 2827 135 9.359E-4
1E-4 3.4255 1891 5 9.356E-6
1E-5 3.4255 1882 9.5E-8

1E-6 3.4255 188 2E-8

1E-7 3.4255 185 3E-7

nder2() starts with h = 0.01, and divides h by 10 for each new estimate, so that the steps for h are
1E-2, 1E-3, ... 1E-14. Since the difference in f(x) starts increasing at h = 1E-7, nder2() returns the
value for h = 1E-6.

More accurate results with Ridders' method: nder1()

Ridders' method (Advances in Engineering Software, vol. 4, no. 2, 1982) is based on extrapolating the
central difference formula to h=0. This method also has the important advantage that it returns an
estimate of the error, as well. This program, nder2(), implements the algorithm:

nderl(ff,xx,hh)

func

o("f",x,"auto" or h), return {f'(x),err}
©Based on Ridders' algorithm
eo6jun@@/dburkett@infinet.com

local con,con2,big,ntab,safe,i,j,err,errt,fac,amat,dest,fphh,fmhh,ffun,hl,6d3

© Initialize constants
1.4-con

conxcon>con?2

1e900->big

10-ntab

2>safe
newmat(ntab,ntab)-amat

© Build function strings
ff&" (xx+hh)">fphh

ff&" (xx-hh)">fmhh

ff&" (xx)">ffun

© Find starting hh if hh="auto"
if hh="auto" then
if xx=0 then: .01-hl
else: xx/1000-h1l
endif
expr(ff&" (xx+hl)")-2xexpr(ffun)+expr(ff&"(xx-hl)")>d3

if d3=0: .01-d3
(V(abs(expr(ffun)/(d3/(h122)))))/18-hh
if hh=0@: .01-shh

endif

oInitialize for solution loop
(expr(fphh)-expr(fmhh))/(2xhh)samat[1,1]
big»err

oLoop to estimate derivative

for i,2,ntab
hh/con-hh
(expr(fphh)-expr(fmhh))/(2*hh)->amat[1,1]

con2->fac

for j,2,i

(amat[j-1,i1*fac-amat[j-1,i-11)/(fac-1)»amatl[j,i]

con2*fac>fac
max(abs(amat[j,il-amat[j-1,1i1),abs(amat[j,il-amat[j-1,i-11))»errt
if errt<err then

errtserr

amat[j,iJ]>dest

endif

endfor
if abs(amat[i,il-amat[i-1,i-1])>safe*xerr:exit

endfor
return {dest,err}

endfunc
nder1() is called with the function name as a string, the evaluation point, and the initial step size. If the
step size is "auto", then nder1() tries to find a good step size based on the function and evaluation
point. nder1() returns a list with two elements. The first element is the derivative estimate, and the
second element is the error estimate.
nder1() is called as

nderl(fname,x,h)
where fname is the name of the function as a string in double quotes. x is the point at which to find the
derivative. h is a parameter which specifies a starting interval. If h is "auto” instead of a number, then
nder1() will try to automatically select a good value for h.
For example, to find the derivative of tan(x) at x = 1.0, with an automatic step size, use

nderl("tan",1,"auto")

which returns {3.42551882077, 3.7E-11}. The derivative estimate is 3.4255..., and the error estimate is
3.7E-11. To find the same derivative with a manual step size of 0.1, use

nderl("tan",1,.1)
which returns {3.42551882081,1.4E-12}.
The value h is an initial step size. It should not be too small, in fact, it should be an interval over which
the function changes substantially. | discuss this more in the section below, More comments on nder1()
and Ridders' method.
To use nder1() and return just the derivative estimate, use

nderl(f,x,h)[1]

where [1] specifies the first element of the returned list.

If nder1() returns a very large error, then the starting interval h is probably the wrong value. For
example,

nderl("tan",1.5707,"auto")returns {-1.038873452988 E7, 3.42735731968 E8}
Note that the error is quite large, on the order of 3.43E8. We can manually set the starting interval to
see if we can get a better estimate. First, using nder1p() (see below), we find that the starting interval
with the "auto" setting is about 1.108E-4. If we try nder1() with a starting interval of about 1/10 of this
value, we get

nderl("tan",1.5707,1E-5) = {1.07771965667E8, 1.62341}

Since the error estimate is much smaller, we can trust the derivative estimate.

Execution time will depend on the execution time of the function for which the derivative is being found.
For simple functions, execution times of 5-20 seconds are not uncommon.

It can be convenient to have a user interface for nder1(). This program provides an interface:

nderui()

Prgm

© User interface for nderl()

© 3jan@@/dburkett@infinet.com

© Result also saved in nderout

local fnl,xx,steps,smode,reslist,ssz

1-xx
.1-steps

1b1 1p

string(xx)->xx

string(steps)>steps

dialog

title "NDER1 INPUT"

request "Function name",fnl

request "Eval point",xx

dropdown "Step size mode",{"auto","manual"},smode
request "Manual step size",steps

enddlog

if ok=@:return

expr(xx)>xx
expr(steps)»>steps

when(smode=2,steps,"auto")>ssz
nder\nderl(fnl,xx,ssz)>reslist
reslist[1]-nderout

dialog

title "NDER1 RESULTS"

text "Input x: "&string(xx)

text "dy/dx: "&string(reslist[1l])
text "Error est: "&string(reslist[2])
text "(Derivative - nderout)"

enddlog

if ok=@:return

goto Tp

EndPrgm

To use nderui(), nder1() must be saved in a folder called nder. nderui() should be stored in the same
folder. Run nderui() like this:

nder/nderui()

and this input dialog box is shown:

Fiw | Fe*TFzvT Fuiwr FEr
trpfeguirtdudivijutils

0 HOEFL INFUT ~y

Function name: [Lan
Eval point: [1
Step size mode autoz

Manual step size:

Enter=0K ESC=CHHCEL
nderui ¢

HMATH FAD AFFEDG FUMC 0/30

The Function Name is entered without quotes, as shown. Eval point is the point at which the derivative
is found. Step size mode is a drop-down menu with these choices:

1: auto nder1() finds the interval size
2: manual you specify the interval in Manual step size

When all the input boxes are complete, press [ENTER] to find the derivative. This results screen is
shown:

Fiw | Fe*TFzvT Fuiwr FEr
trpfeguirtdudivijutils

fl MDER1 RESULTS o

Input =f 1.ed

du-sdx: 3.42552el
Error est: 3.7e-11
COerivative + nderoutl

CEnter=0K & CESC=CAMCEL >

nderui ¢
MATH FAD AFFEON FUMC 0./30

Input x is the point at which the derivative is estimated. dy/dx is the derivative estimate. Error est is the
error estimate. The derivative estimate is saved in the global variable nderout in the current folder.
Push [ENTER] to find another derivative, or press [ESC] to exit the program.

Diagnosing nder1() with nder1p()

nder1p() uses the same algorithm as nder1(), but is coded as a program instead of a function. This
version can be used to debug situations in which nder1() returns results with unacceptably high errors.

nder1p() is called in the same way as nder1(): nderlp(f,x,h).

When nder1p() finishes, the results are shown on the program I/O screen. Push ENTER to return to
the home screen. The results screen looks like this:

Starting interwal hh: 1.e-1
SAFE limit exit

dy-dx estimated 3.4255Zed
ertrori 1.4e-12

amat[] columni: 7.ed

fac: 1.1112e2

HATH FRD_AFFROR FUHL 1730 [F LI ZE]

The 'Starting interval hh' shows the first value for h, which is especially helpful when the "auto” option is
used. The string "SAFE limit exit" may or may not be shown, depending on how nder1p() terminates.
The 'amat[] column' shows the number of main loops that executed before exit. 'fac’ is a scaling factor.

nder1p() creates these global variables, which can all be deleted:
con, con2, big, ntab, safe, i, j, err, errt, fac, amat, dest, fphh, fmhh, ffun ,h1, d3
This is the code for nder1p():

nderlp(ff,xx,hh)

prgm

o("f",x,h) return f'(x), h is step size or "auto"
o6jun@@/dburkett@infinet.com

oprogram version of nderl()

1.4-con
conxcon>con2
1e900->big
10-ntab
2>safe

ff&" (xx+hh)">fphh
ff&" (xx-hh)">fmhh
ff&" (xx)">ffun

if hh="auto" then

if xx=0 then: .01-hl

else: xx/1088-h1

endif

expr(ff&" (xx+hl)")-2xexpr(ffun)+expr(ff&"(xx-hl)")>d3

if d3=0: .01-d3
(V(abs(expr(ffun)/(d3/(h122)))))/18-hh
if hh=@: .@1>hh

endif

clrio
disp "Starting interval hh: "&string(hh)

newmat(ntab,ntab)-amat
(expr(fphh)-expr(fmhh))/(2xhh)samat[1,1]
big»err

for i,2,ntab
hh/con-hh
(expr(fphh)-expr(fmhh))/(2*hh)->amat[1,1]

con2->fac

for j,2,i

(amat[j-1,il*fac-amat[j-1,i-1]1)/(fac-1)»amat[j,i]

con2*xfac>fac
max(abs(amat[j,i]-amat[j-1,i]),abs(amat[j,il-amat[j-1,i-1]))>errt
if errt<err then

errtserr

amat[j,iJ]>dest

endif

endfor

if abs(amat[i,i]-amat[i-1,i-1])>safe*xerr then
disp "SAFE 1limit exit"

exit

endif

endfor

disp "dy/dx estimate: "&string(dest)
disp "error: "&string(err)

disp "amat[] column: "&string(i)
disp "fac: "&string(fac)

pause

disphome

endprgm

General comments on numerical differentiation

Any numerical derivative routine is going to suffer accuracy problems where the function is changing
rapidly. This includes asymptotes. For example, suppose that we try to find the derivative of
tan(1.5707). This is very close to the asymptote of pi/2 = 1.57079632679. nder2() returns an answer of
-1.009...E6, which is clearly wrong. The problem is that the starting interval brackets the asypmtote.
nder1() returns an answer of -1.038..E7, but at least also returns an error of 3.427E8, so we know
something is wrong.

The function must be continuous on the sample interval for both nder1() and nder2().

There are other methods for finding numeric derivatives. For example, you can fit a polynomial (either
Lagrange or least-squares) through some sample points, then find the derivative of the polynomial.
These methods might not have any speed advantage over nder2(), because an accurate, high-order
polynomial requires considerable time to find the coefficients, although it is fast to find the derivative
once you have them.

In my library of numerical methods books | find little reference to finding numerical derivatives. This is
perhaps because it is relatively easy to find derivatives of most simple functions.

Numerical Recipes in Fortran, 2nd edition, William H. Press et al. Section 5.7, p181 describes various
issues and problems in calculating numerical derivatives. The expressions for the errors of avgRC()
and nDeriv() are also found here.

More comments on nder1() and Ridders' method

nder1() is a 'last resort' for finding numerical derivatives, to be used when the other alternatives have
failed. The other alternatives are 1) finding a symbolic derivative, and 2) using the 89/92+ built-in
numerical derivative functions avgRC() and nDeriv().

For example, there is no point in using nder1() for a simple function such as tan(x). The 89/92+ can
easily find the symbolic derivative, which can then be evaluated numerically. However, you may have
complex, programmed functions for which 89/92+ cannot find a symbolic derivative.

The error will increase dramatically near function asymptotes, where the function is changing very
rapidly.

It is possible to adjust h in nDeriv() to get reduce the error at a given point, but that is not very valuable
if you don't know what the answer should be! However, it is possible with a program like nDer1(), which
returns an error estimate, to improve the answer by adjusting h. For example, suppose we want to find
the derivative of tan(x) as accurately as possible at x = 1.4. The basic idea is to call nder() with different
values of h, and try to locate the value of h with the smallest error. The table below shows some

results.

Interval size h Reported error Actual error
0.13 1.77E-9 1.06E-9
0.10 7.54E-10 5.78E-10
0.08 1.03E-9 2.57E-10
0.06 4.58E-10 4.28E-10
0.04 4.06E-10 2.71E-10
0.02 3.83E-10 1.44E-9
0.01 9.06E-10 6.66E-10
0.005 3.05E-9 6.97E-9

This example shows that the error is not too sensitive to the interval size, and the actual error is usually
less than the reported error bound.

nder1() uses Ridders' algorithm to estimate the derivative. The general idea is to extrapolate the
central-difference equation to h=0:

f(x+h)-f(x—h)

f00="2p

If we could let h=0, then this equation would return the exact derivative. However, h=0 is obviously not
allowed. Further, we can't just make h arbitrarily small, because the loss of precision degrades the
answer. This can be seen by using nDeriv() with various values of h. The table below shows the results
returned by nDeriv() for f(x) = tan(x), with various values of h, and with x = 1

h f'(x) error
1E-01 3.5230 0719 849 -9.749E-02
1E-02 3.4264 6416 008 -9.453E-04
1E-03 3.4255 2827 133 -9.451E-06
1E-04 3.4255 1891 538 -9.456E-08
1E-05 3.4255 1882 37 -2.886E-09
1E-06 3.4255 1880 37 1.712E-08
1E-07 3.4255 1882 081 -1.000E-13
1E-08 3.4255 1882 081 -1.000E-13
1E-09 3.4255 1882 081 -1.000E-13
1E-10 3.4255 1882 081 -1.000E-13
1E-11 3.4272 3158 023 -1.000E-13
1E-13 3.5967 9476 186 -1.713E-13
1E-14 1.7127 5941 041 1.712E+00

This seems to be very good performance - too good, in fact. Suppose that instead of including the
tan(x) function in nDeriv(), we call the function indirectly, like this:

nDeriv(ftan(xx),xx,h)|xx=1

where ftan() is just a user function defined to return tan(x). This results in the following:

h f'(x) error
1E-01 3.5230071984915 -9.75E-02
1E-02 3.426464160085 -9.45E-04
1E-03 3.42552827135 -9.45E-06
1E-04 3.425518915 -9.42E-08
1E-05 3.42551882 8.15E-08
1E-06 3.4255188 2.08E-08
1E-07 3.4255185 3.21E-07
1E-08 3.42552 -1.18E-06
1E-09 3.4255 -1.88E-05
1E-10 3.4255 -1.88E-05
1E-11 3.425 5.19E-04
1E-12 3.4 2.55E-02
1E-13 3.5 -7.45E-02
1E-14 0 3.43E+00

This is more typical of the performance we would expect from the central difference formula. As h
decreases, the number of digits in the results decreases, because of the increasingly limited resolution
of f(x+h) - f(x-h). The accuracy gets better until h = 1E-6, then starts getting worse. At the best error,
we only have 8 significant digits in the result.

This example seems to imply that the 89/92+ does not directly calculate the central difference formula
to estimate the derivative of tan(x). Instead, the 89/92+ uses trigonometric identities to convert

tan(x+h)-tan(x-h)
2-h

to

sin(x+h)(cos(x—h)—cos(x+h) sin(x—h))
2-h-cos(x+h) cos(x-h)

This is a clever trick, because it converts the tangent function, which has asymptotes, into a function of
sines and cosines, which don't have asymptotes. Any numerical differentiator is going to have trouble
wherever the function is changing rapidly, such as near asymptotes.

nDeriv() also transforms some other built-in functions:

sinh(), cosh(), tanh() uses the exponential definitions of the hyperbolic functions

log() converts expression to natural log

e converts expression to use e*x form of sinh()
10% converts expression to use sinh()

tanh™() converts expression to use In()

but nDeriv() directly evaluates these functions:

10

In(), sin”(), cos™(), tan'(), sinh™*(), cosh™()

nDeriv() also simplifies polynomials before calculating the central difference formula. For example,
nDeriv() converts

3x%+2x + 1

to
6(x +1/3)=6x+2

Notice that in this case h drops out completely, because the central difference formula calculates
derivatives of 2nd-order equations exactly.

While this is a laudable approach in terms of giving an accurate result, it is misleading if you expect
nDeriv() to really return the actual result of the central difference formula. Further, you can't take
advantage of this method with your own functions if those functions are not differentiable by the
89/92+. This example establishes the need for an improved numerical differentiation routine.

In Ridders' method the general principle is to extrapolate for h=0. nder1() implements this idea by using
successively smaller values of the starting interval h. At each value of h, a new central difference
estimate is calculated. This new estimate, along with the previous estimates, is used to find higher
order estimates. In general, the error will get better as the starting value of h is increased, then
suddenly get very large. The table below shows this effect using nder1() for f(x) = tan(x), where x=1.

hh error
0.001 3.74E-10
0.005 1.48E-10
0.01 2.22E-11
0.1 4.70E-12
0.15 2.00E-12
0.2 1.64E-11
0.3 -1.10E-12
0.4 -4.60E-12
0.5 4 93E-01

Note that the error suddenly increases at hh = 0.5. Obviously, there is a best value for hh that reduces
the error, but this best value is not too sensitive to the actual value of hh, as the error is on the order of
E-12 from hh = 0.1 to 0.4.

One way to find the best hh would be to try different values of hh and see which returned the smallest
error estimate. Since nder1() is so slow, | wanted a better method. In the reference below, the authors
suggest that a value given by

1
_[fx)]7
h= [77(x)
minimizes the error. However, note that this expression includes the second derivative of the function,

f'(x). While we don't know this (we don't even know the first derivative!), we can estimate it with an
expansion of the central difference formula, modified to find the second derivative instead of the first:

11

(x)~ 43
hi

where h; is a small interval, and

d3 = f(x+hy) -2f(x) + f(x-h1)
It might seem that we have just exchanged finding one interval, hh, for another interval, hs. However,
since we are just trying to find a crude estimate to f"(x), it turns out that we don't have to have a precise

value for h;. | arbitrarily chose

hs = x/1000 if x=0, or
hy=0.1 if x=0

If the function is fairly linear near x, d3 may equal 0. If this happens, it means that f'(x) is also near
zero, so we can use any small value for d3; | chose d3 = 0.01, which avoids division by zero in the
equation for hh above.

Next, if f(x) = 0, we'll get h = 0, which won't work. In this case, | set h = 0.01.

So, the final equation is

abs(f(x))
f”(X)
h="9

where | have used the absolute value abs() to ensure that the root is real. | also divide the final result
by 10 to ensure that h is small enough that nder7() doesn't terminate too early.

nder1() can terminate in one of two ways: if the error keeps decreasing, nder1() will run until the amat|[]
matrix is filled with values. However, if at some step the error increases, nder1() will terminate early.
The variable safe specifies the magnitude of the error increase that causes termination. Refer to the
code listing for details.

From my testing with a few functions, nder1() nearly always terminates by exceeding the safe limit.

12

